Wire chamber update Jeffrey Kleykamp 2015-6-17

Outline

- Overview
- Fixed residual plots
- Angular corrections
- TDC time cut fix
- 2D beam shape plots
- Finding secondary clusters
- Applying downstream ToF corrections and measuring efficiency

Wire Chamber

What's a wire chamber?

When a charged particle passes through, the nearest wire(s) register that hit.

What I did wrong with old residuals

- When creating the tracks for the residual plots, I included the point I was making the residual for
- This introduced a bias into the residual
- For example, wire chamber 4 was a sharp peak
 - This was due to the long lever arm of wc4
 - It's far away from wc1-3

Explanation of 8 plots

Wire chamber 1 X direction

Wire chamber 1
Y direction

Wire chamber 2 X direction Wire chamber 2 Y direction

Wire chamber 3 X direction

Wire chamber 3
Y direction

Wire chamber 4 X direction Wire chamber 4
Y direction

New Residual Plots

Plotting, cluster position - track-predicted position Where track is made from 3 other wire chamber clusters Old residual plots in backup, wc4 had very sharp peak.

New Residual Plots Residual over error

Angular effects, before correction

Here I am plotting residual in x as a function of y, and vice versa. The slope of the line represents that tangent of the angle of the roll of the wire chamber. The largest slope is 0.006 + - 0.001 for wc4y, slope 0.35 degrees

Angular corrections

- dx = m*y+b, and dy = m*x+b
- The error is the fit error propagated to our line,
 - $err_x = sqrt(y**2 * dm**2 + m**2 * dy + db**2)$
 - (interchange x and y for reverse situation)
- If the 'y' position isn't known then I give a flat error that's the rms of the residual of the vertical axis of the previous slide
 - Basically rms of the residual

Angular effects, after correction

position (mm)

position (mm)

position (mm)

position (mm)

New version of TDC time cuts

2D plot

Finding secondary clusters

- Finding secondary clusters inside the timecut is evidence that there's a late particle
 - This particle is from a different bin
- Mwpc and cosmic plane is only place to see this extra particle
 - ToF only measures first particle
- My code wasn't originally designed for this

Events with 2+ clusters plotting in time

Note: here I set the afterpulse/electron-drift range to 30 wires making it very unlikely that it's either of those (Otherwise we'd just see a smaller version of our afterpulse peak). We still see particles which might be particles in other bins

Secondary clusters: Distance from first cluster

Secondary clusters: Distance from first cluster

This uses the standard 5mm afterpulse range. As you can see there are a lot of secondary clusters reconstructed near the first one making me think it's electron drift

Secondary clusters

- They're there
- My code needs fixing/tuning
- Afterpulse cuts should maybe be variable depending on how electron cone evolves

Projecting tracks

- Tracks are given as m*z+b lines where x=0,y=0,z=0 is top right on wire chamber 1.
- Needed to align the wire chambers with the main detector with muon/high GeV particles
 - Waiting for tracked DSTs (which I'm partly responsible for)
- Included projections to key points in det.

- Also can measure efficiency in downstream ToF
- Maybe get better measurement
- I just started thinking about these applications
- Can't do upstream

 Right behind wire chamber 4 and before detector – disclaimer: paddle are more square

The sum of dt_L and dt_R is constant (to first order) relative to position.

 Can also have light bounce on sides which delays time

- Here we're missing a right hit
 - So the time is off by dt_L

Broken downstream

This is 1304/2, 8GeV pos pion.

ToF_DownR is 0 for 1304/1 and the first half of 1304/2.

Rob tells me that the downstream right paddle is unreliable

Tracks

- I'm still working on characterizing tracks
- The projected error into downstream is on the order of 2mm for many tracks
 - But gets worse for others
 - I'm trying to get a handle on this
- I add error when I make my angular correction.
 Is it increasing my overall error?
 - Not sure yet

 If we know where the particle hits then we can get time back

 Square paddles mean that light takes longer if it hits above/below the center line

Tracks

- I'm still working on characterizing tracks
- The projected error into downstream is on the order of 2mm for many tracks
 - But gets worse for others
 - I'm trying to get a handle on this
- I add error when I make my angular correction.
 Is it increasing my overall error?
 - Not sure yet

Conclusion

- Mwpc is working
- I'm working on implementing changes
 - But I designed for single hits and throwing away events with secondary events
 - I will rebuild some of my spaghetti code soon

Backup

Old Residuals

Secondary clusters: Number of late clusters

